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Abstract

In this paper, we develop nonlinear constitutive equations and resulting system models quan-
tifying the nonlinear and hysteretic field-displacement relations inherent to lead zirconate titanate
(PZT) devices employed in atomic force microscope stage mechanisms. We focus specifically on
PZT rods utilizing d33 motion and PZT shells driven in d31 regimes, but the modeling framework is
sufficiently general to accommodate a variety of drive geometries. In the first step of the model de-
velopment, lattice-level energy relations are combined with stochastic homogenization techniques to
construct nonlinear constitutive relations which accommodate the hysteresis inherent to ferroelectric
compounds. Secondly, these constitutive relations are employed in classical rod and shell relations to
construct system models appropriate for presently employed nanopositioner designs. The capability
of the models to quantify the frequency-dependent hysteresis inherent to the PZT stages is illustrated
through comparison with experimental data.
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1 Introduction

Stage mechanisms employing the ferroelectric material lead zirconate titanate (PZT) have played a
fundamental role in scanning tunneling microscope (STM) and atomic force microscope (AFM) design
since their inception due to the high set point accuracy, large dynamic range, and relatively small
temperature sensitivity exhibited by the compounds [10]. To illustrate, consider the prototypical
AFM design depicted in Figure 1. To ascertain the 3-D surface structure of a sample, it is moved
laterally along a pre-determined x-y grid by a PZT-driven stage. The response of a highly flexible
microcantilever to changing atomic surface forces is monitored by a reflected laser beam measured
via a photodiode, and forces corresponding to the cantilever displacement changes are determined
via Hooke’s law. A feedback law is used to determine voltages to a transverse PZT stage which
produces displacements in the z-direction to maintain constant forces. A complete scan in this
manner provides a surface image of the compounds. Additionally, PZT actuators are often used
to drive the microcantilevers at resonance to achieve the tapping mode operation used to reduce
damage to specimens.

Two representative stage designs are depicted in Figure 2. The first employs stacked PZT actua-
tors utilizing d33 electromechanical motion to achieve longitudinal positioning along the pre-specified
x-y grid. A second stage provides the transverse motion required to ascertain the sample topography.
Rod models with linear and nonlinear electromechanical input relations are constructed to quantify
the PZT transducer dynamics in this design. The second geometry employs a cylindrical shell —
with half poled d33 to provide horizontal (x-y) motion and half poled d31 for vertical (z) motion
as depicted in Figure 2(b) — to enhance vibration isolation and reduce hysteresis and constitutive
nonlinearities. Thin shell models are developed to characterize this stage design.

To illustrate issues which must be addressed by models, field-displacement data from the stacked
actuator depicted in Figure 2(a) is plotted in Figures 3 and 4. The data in Figure 3 was collected at
0.1 Hz and illustrates the nested, hysteretic relation between input fields and generated displacements
in a nearly quasistatic regime. The data in Figure 4 was collected at frequencies ranging from 0.279 Hz
to 27.9 Hz to illustrate the frequency-dependence of the hysteresis as well as certain dynamic effects.

At low frequencies, the inherent hysteresis can be accommodated through proportional-integral-
derivative (PID) or robust control designs [5, 6, 18, 24]. However, at the higher frequencies required
for applications including real-time monitoring of biological processes (e.g., protein unfolding), com-
prehensive product diagnostics, and single electron spin detection [23, 34], increasing noise-to-data
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Figure 1: (a) Configuration of a prototypical AFM, and (b) surface image determined by one lateral
sweep.
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Figure 2: Actuator configurations employed for sample positioning in AFM: (a) stacked actuators
employed as x- and y-stages, and (b) cylindrical PZT transducer.

ratios and diminishing high-pass characteristics of control filters preclude a sole reliance on feedback
laws to eliminate hysteresis.

Alternatively, it is illustrated in [16, 17], that use of charge- or current-controlled amplifiers can
essentially eliminate hysteresis. However, this mode of operation can be prohibitively expensive when
compared with the more commonly employed voltage-controlled amplifiers, and current control is
ineffective if maintaining DC offsets as is the case when the x-stage of an AFM is held in a fixed
position while a sweep is performed with the y-stage.

The need to significantly increase scanning speeds with general amplifiers motivates the devel-
opment of models and model-based control designs which accommodate the frequency-dependent
hysteresis inherent to the PZT actuators employed in the AFM stages. As detailed in [25], there
exist a number of general approaches and frameworks for quantifying the constitutive nonlinearities
and hysteresis in the general class of ferroelectric materials which encompass PZT. These include
phenomenological macroscopic models [20], Preisach models [9, 22], domain wall models [28, 29],
micromechanical models [4, 14, 15], mesoscopic energy relations [3, 13] and homogenized energy
models [27, 33]. Within the context of AFM design, Croft, Shed and Devasia [5] have employed a
combination of a viscoelastic creep model and nonlinear Preisach representation to compensate for
hysteresis and creep in an AFM stage whereas a domain wall model was employed in [30] for the
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Figure 3: Nested minor loops in 0.1 Hz field-displacement data from a stacked PZT stage of the type
depicted Figure 2(a).
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Figure 4: Frequency-dependent field-displacement behavior of a stacked PZT stage of the type
depicted in Figure 2(a): sample rates of (a) 0.279 Hz, (b) 5.58 Hz, and (c) 27.9 Hz.

characterization of hysteresis in certain stage constructs. Primary requirements for nonlinear hys-
teresis models for the PZT actuators in an AFM are (i) flexibility with regard to frequency-dependent
hysteresis effects — the frameworks of [5, 30] are limited in this regard —, (ii) exact or approximate
invertibility for linear control design, and (iii) sufficient efficiency for real-time implementation at
the speeds required for present and future applications.

In this paper, we develop AFM transducer models, based on a homogenized energy framework for
characterizing hysteresis and constitutive nonlinearities in ferroelectric materials, which meet these
criteria. On Section 2, we summarize the framework developed in [33] for quantifying hysteresis
in the field-polarization relation and develop constitutive equations which characterize the elastic
and electromechanical behavior of the PZT material. These constitutive relations are employed in
Section 3 to construct rod and shell models for the stages depicted in Figure 2, and the well-posedness
of the models is established in Section 4. Numerical approximation techniques for the transducer
models are summarized in Section 5, and the capability of the framework to quantify the biased
and frequency-dependent hysteresis behavior of the transducers is illustrated in Section 6 through a
comparison with the experimental data plotted in Figures 2 and 3.

With regard to criteria (ii) and (iii), the construction and experimental implementation of model
inverses to linearize the nonlinear dynamics is demonstrated in [12]. Hence the models provide an
effective framework for characterizing the hysteresis and nonlinear dynamics inherent to PZT-based
nanopositioners in a manner which promotes stage and control design.

2 Constitutive Relations

In this section, we summarize the development of constitutive relations which quantify the nonlinear
and hysteretic map between input fields E and stresses σ and the polarization P and strains ε gen-
erated in ferroelectric materials. These relations are developed in three steps. In the first, Helmholtz
and Gibbs energy relations are constructed at the lattice level to quantify the local dependence of
P and ε on E and σ for regimes in which relaxation due to thermal processes is either negligible or
significant. In the second step of the development, material nonhomogeneities, polycrystallinity, and
variable field effects are incorporated through the assumption that certain material properties are
manifestations of underlying distributions rather than constants. Stochastic homogenization in this
manner yields macroscopic models which quantify the bulk hysteretic E-P behavior measured in fer-
roelectric materials. Finally, necessary conditions associated with minimization of the Gibbs energy
are invoked to obtain 1-D and 2-D constitutive relations quantifying the elastic and electromechanical
behavior of the transducer materials.
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2.1 Helmholtz and Gibbs Energy Relations

As detailed in [33], an appropriate Helmholtz energy relation is

ψ(P, ε) = ψP (P ) +
1
2
Y ε2 − a1εP − a2εP

2 (1)

where the component

ψP (P ) =


1
2η(P + PR)2 , P ≤ −PI

1
2η(P − PR)2 , P ≥ PI

1
2η(PI − PR)

(
P 2

PI
− PR

)
, |P | < PI

quantifies the internal energy due to dipole processes. As shown in Figure 5, PI is the positive
inflection point which delineates the transition between stable and unstable regions, P0 denotes the
unstable equilibrium, and PR is the value of P at which the positive local minimum of ψ occurs.
The parameter η is the reciprocal of the slope of the E-P relation after switching occurs. The
second term on the right side of (1) quantifies the elastic energy whereas the third and fourth terms
quantify electromechanical coupling effects. Here Y denotes the Young’s modulus and a1, a2 are
electromechanical coupling coefficients.

The Gibbs energy relation

G(E, σ, P, ε) = ψP (P ) +
1
2
Y ε2 − a1εP − a2εP

2 − EP − σε (2)

incorporates the elastic work σε and electrostatic work EP . This provides the functional that is
minimized or balanced with the relative thermal energy to provide local E-P relations and global
electromechanical constitutive equations. The reader is referred to [25, 27] for details regarding the
manner through which the Gibbs energy incorporates the dependent variables ε and P in terms of
the independent variables σ and E.
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Figure 5: (a) Helmholtz energy ψ and Gibbs energy G for σ = 0 and increasing fields E. (b) Switch
in the local polarization P that occurs as E is increased beyond the local coercive field Ec given by
(6) in the absence of thermal activation.
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2.2 Polarization Kernel — Negligible Thermal Activation

For operating regimes in which thermal activation is negligible, the local E-P relation is determined
from the necessary conditions

∂G

∂P
= 0 ,

∂2G

∂P 2
> 0.

For the piecewise quadratic functional (2), this yields a polarization kernel of the form

P (E) =
E

η − 2a2ε
+ δ

PRη + δa1ε

η − 2a2ε
(3)

where δ = 1 for positively oriented dipoles and δ = −1 for those having negative orientation. To
specify δ, and hence P , more specifically in terms of the initial dipole orientations and previous
switches, we employ Preisach notation and take

[P (E; Ec, ξ)](t) =


[P (E; Ec, ξ)](0) , τ(t) = ∅
E
η − PR , τ(t) 6= ∅ and E(max τ(t)) = −Ec

E
η + PR , τ(t) 6= ∅ and E(max τ(t)) = Ec.

(4)

Here

[P (E; Ec, ξ)](0) =


E
η − PR , E(0) ≤ −Ec

ξ , −Ec < E(0) < Ec

E
η + PR , E(0) ≥ Ec

(5)

defines initial kernel values in terms of the parameter ξ = E0
η ± PR, ∅ designates the empty set, and

the set of switching times is given by

τ(t) = {ts ∈ (0, t] |E(ts) = −Ec or E(ts) = Ec}.

The local coercive field
Ec = η(PR − PI) (6)

quantifies the field at which the negative well ceases to exist and hence a dipole switch occurs. To
illustrate, the condition τ 6= ∅ and E(max τ(t)) = Ec designates that switching has occurred and the
last switch was at Ec; hence the local polarization is [P (E; Ec, ξ)](t) = E(t)

η + PR.

Remark 1 For the drive levels employed for nanopositioning, the stress effects on the polarization
are typically negligible which motivates taking ε = 0 in (3)–(5). Hence the relations

P (E) =
1
η
E + PRδ

[P (E; Ec, ξ)](t) =


[P (E; Ec, ξ)](0) , τ(t) = ∅
E
η − PR , τ(t) 6= ∅ and E(max τ(t)) = −Ec

E
η + PR , τ(t) 6= ∅ and E(max τ(t)) = Ec

(7)

and

[P (E; Ec, ξ)](0) =


E
η − PR , E(0) ≤ −Ec

ξ , −Ec < E(0) < Ec

E
η + PR , E(0) ≥ Ec

are usually employed when characterizing AFM stages.
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2.3 Polarization Kernel — Thermal Activation

If thermal relaxation is significant, the Gibbs energy G and relative thermal energy kT/V are bal-
anced through the Boltzmann relation

µ(G) = Ce−GV/kT . (8)

Here k is Boltzmann’s constant, V denotes a reference volume chosen to ensure physical relaxation
behavior, and C is chosen to ensure integration to unity for the complete set of admissible inputs.
As detailed in [25, 33], this yields the local polarization relation

P = x+ 〈P+〉+ x− 〈P−〉 . (9)

The fractions x+ and x− of positively and negatively oriented dipoles are quantified by the differential
equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+

which can be simplified to
ẋ+ = −p+−x+ + p−+(1− x+)

through the identity
ẋ+ + ẋ− = 1.

The expected polarizations due to positively and negatively oriented dipoles are

〈P+〉 =

∫ ∞

PI

Pe−G(E,P )V/kT dP∫ ∞

PI

e−G(E,P )V/kT dP

, 〈P−〉 =

∫ −PI

−∞
Pe−G(E,P )V/kT dP∫ −PI

−∞
e−G(E,P )V/kT dP

(10)

where the denominator results from the evaluation of C in (8). The likelihoods of switching from
positive to negative, and conversely, are given by

p+− =
1

T (T )

∫ PI

PI−ε
e−G(E,P )V/kT dP∫ ∞

PI−ε
e−G(E,P )V/kT dP

, p−+ =
1

T (T )

∫ −PI+ε

−PI

e−G(E,P )V/kT dP∫ −PI+ε

−∞
e−G(E,P )V/kT dP

(11)

where ε is taken to be a small positive constant. The relaxation time T is the reciprocal of the
frequency at which dipoles attempt to switch. It is proven in [25, 33] that P given by (9) converges
to the local polarization (7) in the limit kT/V → 0 of negligible thermal activation.

Remark 2 In (10) and (11), we use the notation G(E, P ) to indicate that we take ε = σ = 0 in (2)
in accordance with the assumption that stress effects on the polarization are negligible at the drive
levels employed in AFM stages.
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2.4 Macroscopic Polarization Model

The local polarization relations (7) and (9) exhibit the behavior depicted in Figure 6 and provide
reasonable characterization of the E-P behavior of certain single crystal compounds. However,
to incorporate the effects of material and stress nonhomogeneities, polycrystallinity, and variable
effective fields Ee = E + EI , we assume that the interaction field EI and local coercive field Ec

given by (6) are manifestations of underlying distributions rather than constants. If we designate
the associated densities by ν1 and ν2, the macroscopic field-polarization behavior is quantified by the
relation

[P (E)](t) =
∫ ∞

0

∫ ∞

−∞
ν1(Ec)ν2(EI)[P (E + EI ; Ec, ξ)](t) dEI dEc (12)

where the kernel P is given by (7) or (9).
As detailed in [25, 27], the densities ν1 and ν2 are assumed to satisfy the physical criteria

(i) ν1(x) defined for x > 0,

(ii) ν2(−x) = ν2(x),

(iii) |ν1(x)| ≤ c1e
−a1x,

|ν2(x)| ≤ c2e
−a2|x|

(13)

for positive c1, a1, c2, a2. The restricted domain in (i) reflects the fact that the coercive field Ec is
positive whereas the symmetry enforced in the interaction field through (ii) yields the symmetry
observed in low-field Rayleigh loops. Hypothesis (iii) incorporates the physical observation that the
coercive and interaction fields decay as a function of distance and guarantees that integration against
the piecewise linear kernel yields finite polarization values.

Approximation of (12) through Gaussian quadrature techniques yields the approximate relation

[P (E)](t) =
Ni∑
i=1

Nj∑
j=1

ν1(Eci)ν2(EIj )[P (EIj + E; Eci , ξj)](t)viwj (14)

where EIj , Eci denote the abscissas associated with respective quadrature formulae and vi, wj are
the respective weights — e.g., see [25]. Algorithms used to implement the approximate polarization
model (14) are provided in [25, 33].

Techniques for identifying the densities ν1 and ν2 are illustrated in [25, 27]. For certain appli-
cations, reasonable accuracy is provided by a priori functions satisfying the physical criteria (13)
and having a small number of parameters to be estimated through least squares fits to data — e.g.,
variances and means in normal and lognormal relations. For more general applications requiring high
accuracy for a wide range of operating conditions, the Ni +Nj discretized density values ν1(Eci) and
ν2(EIj ) can be estimated through least squares techniques.

P P

(a)

E

(b)

E

Figure 6: Hysteron provided by (a) the relation (7) with negligible thermal relaxation, and (b) the
relation (9) which incorporates relaxation mechanisms.
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Remark 3 From the perspective of both numerical and experimental implementation and the estab-
lishment of the well-posedness of resulting transducer models, it is important to quantify the regularity
between input fields and the polization predicted by (12). In Appendix A, it is established that P given
by (12) is continuous with respect to E.

2.5 Constitutive Relations

To obtain a elastic constitutive relations, the equilibrium condition

∂G

∂ε
= 0

is invoked to obtain
σ = Y ε− a1P − a2P

2

which reduces to Hooke’s law when P = 0. To incorporate internal damping, we posit that in the
absence of electromechanical effects, stress is proportional to a linear combination of strain and strain
rate (Kelvin–Voigt damping hypothesis). Finally, we note that the PZT stage mechanisms are poled
and hence operate about the remanence polarization P = PR rather than the depoled state P = 0.
When combined with the polarization model (12), this yields the 1-D constitutive relations

σ = Y ε + Cε̇− a1(P − PR)− a2(P − PR)2

[P (E)](t) =
∫ ∞

0

∫ ∞

−∞
ν1(Ec)ν2(EI)[P (E + EI ; Ec, ξ)](t) dEI dEc

(15)

where C is the Kelvin–Voigt damping coefficient. These relations are employed when constructing
rod models to characterize the hysteretic dynamics shown in Figures 3 and 4 for the stacked actuators
employed in the stage construction depicted in Figure 2(a).

The constitutive behavior of the PZT shell depicted in Figure 2(b) differs from that of the rod in
two fundamental aspects: (i) the longitudinal actuation is due to d31 rather than d33 mechanisms,
and (ii) longitudinal and circumferential stresses and strains are coupled due to the curvature. To
designate the coupled material behavior, we let εx, σx and εθ, σθ respectively denote the normal
strains and stresses in the longitudinal and circumferential directions and we denote shear strains
and stresses by exθ and σxθ. Finally, we let ν denote the Poisson ratio for the material. The resulting
2-D constitutive relations

σx =
Y

1− ν2
(εx + νεθ) +

C

1− ν2
(ε̇x + νε̇θ)−

1
1− ν

[
a1(P − PR) + a2(P − PR)2

]
σθ =

Y

1− ν2
(εθ + νεx) +

C

1− ν2
(ε̇θ + νε̇x)− 1

1− ν

[
a1(P − PR) + a2(P − PR)2

]
σxθ =

Y

2(1 + ν)
εxθ +

C

2(1 + ν)
ε̇xθ

[P (E)](t) =
∫ ∞

0

∫ ∞

−∞
ν1(Ec)ν2(EI)[P (E + EI ; Ec, ξ)](t) dEI dEc

(16)

are employed when constructing transducer models for cylindrical nanopositioning stages.
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3 Transducer Models for Stacked and Cylindrical AFM Stages

We now employ the 1-D constitutive relation (15) and 2-D relation (16) to construct models for the
stacked and cylindrical AFM stages depicted in Figure 2. For the stacked actuator, we consider two
frameworks: (i) a distributed PDE model which quantifies displacements along the rod length as a
function of the input field, and (ii) a lumped model which exploits the assumption of uniform stresses
and fields along the rod length to motivate an ODE quantifying displacements only at the rod end.
A comparison between characterization capabilities provided by the two frameworks is provided in
Section 6. For the cylindrical shell design, we summarize a Donnell–Mushtari model which quantifies
vertical motion provided by the z-component of the stage depicted in Figure 2(b).

3.1 Rod Model for the Stacked Actuator

Distributed Rod Model

We consider first the development of a distributed rod model which quantifies the displacement
u(t, x) along the rod length. In accordance with present stage design, one end of the rod is assumed
fixed while the other encounters resistance due to the connecting mechanisms. We assume that
this latter contribution can be modeled as a damped elastic system with mass m`, stiffness k` and
damping coefficient c`. The density, cross-sectional area and length of the rod are denoted by ρ, A
and ` and, in accordance with (15), the Young’s modulus and Kelvin–Voigt damping parameter are
denoted by Y and C.

Force balancing yields the relation

ρA
∂2u

∂t2
=

∂N
∂x

(17)

where the resultant N =
∫
A σdA is given by

N = Y A
∂u

∂x
+ CA

∂2u

∂x∂t
− a1[P (E)− PR]− a2[P (E)− PR]2

once the linear relation ε = ∂u
∂x is employed for the strains in (15). The nonlinear and hysteretic map

between input fields E and the polarization P is specified by (12). The fixed-end condition yields
u(t, 0) = 0 and balancing forces at x = ` yields the energy dissipating end condition

N(t, `) = −kLu(t, `)− cL
∂u

∂t
(t, `)−ML

∂2u

∂t2
(t, `).

Finally, initial conditions are taken to be u(0, x) = u0(x) and ∂u
∂t (0, x) = u1(x). This provides a

strong formulation of the stacked actuator model.
To define a weak or variational form of the model which is appropriate for well-posedness analysis,

approximation, or control design, states z = (u(·), u(`)) are considered in the state space X =

x= 0 x= l

l

l

l

u

k
m

c

Figure 7: Rod of length ` and cross-sectional area A with a fixed end at x = 0 and energy dissipating
boundary conditions at x = `.
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L2(0, `)× R with the inner product

〈Φ1, Φ2〉X =
∫ `

0
ρAφ1φ2dx + m`ϕ1ϕ2 (18)

where Φ1 = (φ1, ϕ1), Φ2 = (φ2, ϕ2) with ϕ1 = φ1(`), ϕ2 = φ1(`). The space of test functions is taken
to be

V =
{
Φ = (φ, ϕ) ∈ X |φ ∈ H1(0, `), φ(0) = 0, φ(`) = ϕ

}
with the inner product

〈Φ1, Φ2〉V =
∫ `

0
Y Aφ′1φ

′
2dx + k`ϕ1ϕ2. (19)

Multiplication by φ ∈ H1
0 (0, `) = {φ ∈ H1(0, `) |φ(0) = 0} and integration by parts in space yields

the weak model formulation∫ `

0
ρA

∂2u

∂t2
φdx +

∫ `

0

[
Y A

∂u

∂x
+ CA

∂2u

∂x∂t

]
dφ

dx
dx =

∫ `

0
fφdx

+A
[
a1(P − PR) + a2(P − PR)2

]∫ `

0

dφ

dx
dx−

[
k`u(t, `) + c`

∂u

∂t
(t, `) + m`

∂2u

∂t2
(t, `)

]
φ(`)

(20)

which must be satisfied for all φ ∈ V .

Lumped Rod Model

The assumption that fields and stresses are uniform along the rod length motivates the conclusion
that strains (relative displacements) also exhibit negligible x-dependence. Since the position of the
sample is dictated by the position of the rod tip at x = `, this motivates the development of a lumped
model which quantifies u`(t) = u(t, `).

From the assumption of uniform strains along the rod length, we take

ε(t) =
u`(t)

`

in (15). Balancing the forces σA for the rod with those of the restoring mechanism yields the lumped
model

ρA`
d2u`

dt2
(t) +

CA

`

du`

dt
(t) +

Y A

`
u`(t) = −m`

d2u`

dt2
(t)− c`

du`

dt
(t)− ku`(t)

+Aa1[P (E(t))− PR] + Aa2[P (E(t))− PR]2

or, equivalently,

m
d2u`

dt2
(t) + c

du`

dt
(t) + ku`(t) = ã1[P (E(t))− PR] + ã2[P (E(t))− PR]2 (21)

where

m = ρA` + m` , c =
CA

`
+ c` , k =

Y A

`
+ k` , ã1 = Aa1 , ã2 = Aa2 (22)

and the initial conditions are u`(0) = u0 and du`
dt (0) = u1. The polarization P is specified by the

model (12) or discretized model (14).

10



The model can also be written as the first-order system

~̇u`(t) = A~u`(t) + ~P(E(t))

~u`(0) = ~u0

(23)

where ~u`(t) = [u`(t), u̇`(t)]T , ~u`(0) = [u0, u1]T and

A =
[

0 1
−k/m −c/m

]
, ~P(E(t)) =

1
m

[
ã1(P (E(t))− PR) + ã2(P (E(t))− PR)2

] [
0
1

]
.

3.2 Cylindrical Shell Model

To quantify the dynamics of the cylindrical stage depicted in Figure 2(b), we construct a linear
shell model with nonlinear inputs quantified by the 2-D constitutive relation (16). We focus on the
actuator employed for transverse displacements since real-time control of this component is required
to maintain constant forces between the sample and micro-cantilever. The mass of the shell employed
for horizontal translation is combined with the mass of the sample to provide an inertial force acting
on the free end of the vertical actuator.

For modeling purposes, we assume that the shell has length `, thickness h, and radius R. The
axial direction is specified along the x-axis and the longitudinal, circumferential and transverse
displacements are respectively denoted by u, v and w as depicted in Figure 8. The density is des-
ignated by ρ and the region occupied by the reference or middle surface of the shell is specified by
Γ0 = [0, `]× [0, 2π]. In accordance with the constitutive relations (16), Y, C and ν denote the Young’s
modulus, Kelvin–Voigt damping coefficient and Poisson ratio for the material. We point out that
εx, εθ and εxθ in (16) denote strains at points throughout the shell thickness whereas 2-D shell models
are formulated in terms of strains ex, eθ and exθ in the reference surface of the shell. The relationship
between the two is established through the assumption that displacements are linear through the
shell thickness which comprises one of the fundamental tenets of linear shell theory [2, 25].

We consider the case in which the bottom edge of the shell (x = 0) is clamped and the opposite
end (x = `) is acted upon only by the inertial force associated with the combined mass m of the x-y
actuator and the sample.

As detailed in [2, 25], force and moment balancing yield the Donnell–Mushtari shell equations

Rρh
∂2u

∂t2
−R

∂Nx

∂x
− ∂Nxθ

∂θ
= 0

Rρh
∂2v

∂t2
− ∂Nθ

∂θ
−R

∂Nxθ

∂x
= 0

Rρh
∂2w

∂t2
−R

∂2Mx

∂x2
− 1

R

∂2Mθ

∂θ2
− 2

Mxθ

∂x∂θ
+ Nθ = 0

(24)

where the force and moment resultants are

Nx =
Y h

1− ν2
(ex + νeθ) +

Ch

1− ν2
(ėx + νėθ)−

h

1− ν
[a1(P − PR) + a2(P − PR)2]

Nθ =
Y h

1− ν2
(eθ + νex) +

Ch

1− ν2
(ėθ + νėx)− h

1− ν
[a1(P − PR) + a2(P − PR)2]

Nxθ =
Y h

2(1 + ν)
exθ +

Ch

2(1 + ν)
ėxθ

(25)

11



x= l
h

u
v

w

x=0

Figure 8: Orientation of the shell geometry used when quantifying the longitudinal, circumferential
and transverse displacements u, v and w.

and

Mx =
Y h3

12(1− ν2)
(κx + νκθ) +

Ch3

12(1− ν2)
(κ̇x + νκ̇θ)

Mθ =
Y h3

12(1− ν2)
(κθ + νκx) +

Ch3

12(1− ν2)
(κ̇θ + νκ̇x)

Mxθ =
Y h3

24(1 + ν)
κxθ +

Ch3

24(1 + ν)
κ̇xθ.

(26)

The midsurface strains and changes in curvature are

ex =
∂u

∂x
, eθ =

1
R

∂v

∂θ
+

w

R
, exθ =

∂v

∂x
+

1
R

∂u

∂θ

κx = −∂2w

∂x2
, κθ = − 1

R2

∂2w

∂θ2
, κxθ = − 2

R

∂2w

∂x∂θ
.

(27)

The boundary conditions for the fixed-end at x = 0 are taken to be

u = v = w =
∂w

∂x
= 0

whereas the conditions

Nx = −m
∂2u

∂t2
, Nxθ +

Mxθ

R
= 0

Qx +
1
R

∂Mxθ

∂θ
= 0 , Mx = 0

are employed at x = `. The first resultant condition incorporates the inertial force due to the mass
m of the PZT actuator employed for x-y translation along with the mass of the sample.

To reduce smoothness requirements for approximation and eliminate the Dirac behavior of ex-
ternal inputs at x = `, we also consider a weak formulation of the model. The state is taken to be
z = (u(·, ·), v(·, ·), w(·, ·), u(`, ·)) in the state space

X = L2(Ω)× L2(Ω)× L2(Ω)× L2(0, 2π)

where
Ω = [0, `]× [0, 2π]

12



denotes the shell region. The space of test functions is specified as

V =
{
Φ = (φ1, φ2, φ3, η) ∈ X |φ1 ∈ H1

0 (Ω), φ2 ∈ H1
0 (Ω), φ3 ∈ H2

0 (Ω)
}

where η(θ) = φ1(`, θ) and

H1
0 (Ω) =

{
φ ∈ H1(Ω) |φ(0, θ) = 0

}
H2

0 (Ω) =
{
φ ∈ H2(Ω) |φ(0, θ) = φ′(0, θ) = 0

}
.

(28)

Through either variation principles — e.g., see [2] — or integration by parts, one obtains the
weak formulation of the thin shell model,∫

Ω

{
Rρh

∂2u

∂t2
φ1 + RNx

∂φ1

∂x
+ Nxθ

∂φ1

∂θ

}
dω = 0

∫
Ω

{
Rρh

∂2v

∂t2
φ2 + Nθ

∂φ2

∂θ
+ RNxθ

∂φ2

∂x

}
dω = 0

∫
Ω

{
Rρh

∂2w

∂t2
φ3 −RMx

∂2φ3

∂x2
− 2Mxθ

∂2φ3

∂x∂θ
− 1

R
Mθ

∂2φ3

∂θ2
+ Nθφ3

}
dω = 0,

(29)

which must be satisfied for all Φ ∈ V . The resultants are given by (25) and (26) with midsurface
strains and changes in curvature designated in (27).

Remark 4 It is noted that the d31 poling, used to generate vertical motion in the stage, produces no
polarization contributions to the moments. However, transverse displacements w in the shell model
are generated by the Nθ resultant in the w relation and hence all three components of the displacement
are coupled.

4 Model Well-Posedness

4.1 Rod Model

To provide a framework which facilitates the establishment of criteria which guarantee the existence
of a unique solution to the distributed rod model with nonlinear inputs, we consider a Hilbert space
formulation of the weak model formulation (20) with the state and test function spaces

X = L2(0, `)× R

V =
{
Φ = (φ, ϕ) ∈ X |φ ∈ H1(0, `), φ(0) = 0, φ(`) = ϕ

}
and inner products

〈Φ1, Φ2〉X =
∫ `

0
ρAφ1φ2dx + m`ϕ1ϕ2

〈Φ1, Φ2〉V =
∫ `

0
Y Aφ′1φ

′
2dx + k`ϕ1ϕ2

(30)

where Φ1 = (φ1, ϕ1), Φ2 = (φ2, ϕ2) with ϕ1 = φ1(`), ϕ2 = φ1(`).
It is observed that V is densely and continuously embedded in X with |Φ|X ≤ c|Φ|V ; this is

expressed by V ↪→ X. Moreover, when one defines conjugate dual spaces X∗ and V ∗ — e.g., V ∗

denotes the linear space of all conjugate linear continuous functionals on V — two observations are
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important: (i) X∗ can be identified with X through the Riesz map, and (ii) X∗ ↪→ V ∗. Hence the
two spaces comprise what is termed a Gelfand triple V ↪→ X ∼= X∗ ↪→ V ∗ with pivot space X and
duality pairing (duality product) 〈·, ·〉V ∗,V . The latter is defined as the extension by continuity of
the inner product 〈·, ·〉X from V ×X to V ∗ ×X. Hence elements v∗ ∈ V ∗ have the representation
v∗(v) = 〈v∗, v〉V ∗,V .

We now define the stiffness and damping sesquilinear forms σi : V × V → C, i = 1, 2, by

σ1(Φ1, Φ2) = 〈Φ1, Φ2〉V

σ2(Φ1, Φ2) =
∫ `

0
CAφ′1φ

′
2dx + c`ϕ1ϕ2.

(31)

It can be directly verified that the stiffness form satisfies

(H1) |σ1(Φ1, Φ2)| ≤ c1|Φ1|V |Φ2|V , for some c1 ∈ R (Bounded)

(H2) Re σ1(Φ1, Φ1) ≥ c2|Φ1|2V , for some c2 > 0 (V -Elliptic)

(H3) σ1(Φ1, Φ2) = σ1(Φ2, Φ1) (Symmetric)

for all ψ, φ ∈ V . Moreover, the damping term σ2 satisfies

(H4) |σ2(Φ1, Φ2)| ≤ c3|Φ1|V |Φ2|V , for some c3 ∈ R (Bounded)

(H5) Re σ2(Φ1, Φ1) ≥ c4|Φ1|2V , for some c4 > 0 (V -Elliptic).
(32)

The input space is taken to be the Hilbert space U = R and the input operator B : U → V ∗ is
defined by

〈[B(E)](t), Φ〉V ∗,V =
[
a1(P (E(t))− PR) + a2(P (E(t))− PR)2

] ∫ `

0
φ′ dx (33)

for Φ = (φ, ϕ) with ϕ = φ(`). It is observed that B can be expressed as

[B(E)](t) = [b(E)](t) · g , g ∈ V ∗ (34)

where
[b(E)](t) = (P (E(t))− PR) + a2(P (E(t))− PR)2

g(Φ) =
∫ `

0
φ′ dx.

(35)

The model (20) can then be written in the abstract variational formulation

〈ü(t), Φ〉V ∗,V + σ2(u̇(t), Φ) + σ1(u(t), Φ) = 〈[B(E)](t), Φ〉V ∗,V

u(0) = u0 , u̇(0) = u1

(36)

for all Φ ∈ V .
Alternatively, one can define the operators Ai ∈ L(V, V ∗), i = 1, 2, by

〈AiΦ1, Φ2〉V ∗,V = σi(Φ1, Φ2) (37)

and formulate the model in operator form as

ü(t) + A2u̇(t) + A1u(t) = [B(E)](t)

u(0) = u0 , u̇(0) = u1

(38)
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in the dual space V ∗. This formulation illustrates the analogy between the infinite-dimensional,
strongly damped elastic model and the familiar finite-dimensional relations (23).

Model Well-Posedness

As a prelude to establishing the well-posedness of the beam model with hysteretic E-P relations,
we provide a lemma which quantifies the smoothness of the input operator.

Lemma 1 Consider field inputs E ∈ C[0, T ]. The input operator B defined by (33) then satisfies

B(E) ∈ L2(0, T ; V ∗). (39)

Proof. In Appendix A, we establish that for continuous input fields E, the polarization satisfies
P ∈ C[0, T ] which implies that b defined by (35) satisfies b(·) : C[0, T ] → C[0, T ]. Hence the norm

‖[B(E)](t)‖V ∗ = sup
v∈V

|[b(E)](t) · g(v)|
‖v‖V

exists for each t ∈ [0, T ]. Since ‖[B(E)](t)‖V ∗ = |[b(E)](t)| · ‖g‖V ∗ , it follows that

‖B(E)‖2
L2(0,T ;V ∗) ≤ max

t∈[0,T ]

{
|[b(E)](t)|2

}
· T · ‖g‖2

V ∗

which implies that
B(E) ∈ L2(0, T ; V ∗).

2

The well-posedness of the model is established by the following theorem whose proof follows
directly from Theorem 4.1 of [2] or Theorem 2.1 and Remark 2.1 of [1].

Theorem 2 Let σ1 and σ2 be given by (31) and consider continuous field inputs E ∈ C[0, T ]. There
then exists a unique solution w to (36), or equivalently (38), which satisfies

u ∈ C(0, T ; V )

u̇ ∈ C(0, T ; X).

4.2 Shell Model

Similar well-posedness results can be obtained for the shell model (29) through consideration of an
analogous Hilbert space formulation of the model. Details regarding the construction of appropriate
inner product spaces, sesquilinear forms, and operators can be found in [25, 30].

5 Numerical Approximation Techniques

To implement the distributed models for either the rectangular stacked actuator or the cylindrical
actuator, it is necessary to develop appropriate approximation techniques to discretize the modeling
PDE. To accomplish this, we consider general Galerkin methods in which basis functions are com-
prised of spline or spline-Fourier tensor products. The resulting methods can accommodate a variety
of boundary conditions, are sufficiently accurate to resolve fine-scale dynamics, and can be employed
for constructing reduced-order POD approximates for real-time implementation.
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5.1 Stacked Actuator Model

To approximate the weak form of the stacked actuator model (20), we employ a finite element
discretization and a finite difference discretization in time. The semidiscrete system resulting from
the finite element approximation is appropriate for finite dimensional, continuous time control design
whereas the fully discrete system is amenable to simulations and control implementation.

To obtain a semidiscrete system, we consider a uniform partition of [0, `] with points xj = jh, j =
0, 1, · · · , N with step size h = `/N where N denotes the number of subintervals. The spatial basis
{φj}N

j=1 is then comprised of linear splines

φj(x) =
1
h


(x− xj−1) , xj−1 ≤ x < xj

(xj+1 − x) , xj ≤ x ≤ xj+1

0 , otherwise
, i = 1, · · · , N − 1

φN (x) =
1
h

{
(x− xN−1) , xN−1 ≤ x ≤ xN

0 , otherwise

(see [21] for details regarding the convergence analysis for the method). The solution u(t, x) to (20)
is subsequently approximated by the expansion

uN (t, x) =
N∑

j=1

uj(t)φj(x) .

Through construction, the approximate solution satisfies the essential boundary condition uN (t, 0) =
0 and can attain arbitrary displacements at x = `.

The projection of the problem (20) onto the finite dimensional subspace V N yields the semidis-
crete system

ż(t) = Az(t) + A
[
a1(P (t)− PR) + a2(P (t)− PR)2

]
B

z(0) = z0

(40)

where z(t) = [u1(t), · · · , uN (t), u̇1(t), · · · , u̇N (t)]T and

A =

[
0 I

−M−1K −M−1Q

]
, B =

[
0

M−1b

]
. (41)

The mass, stiffness and damping matrices have the components

[M ]ij =


∫ `

0
ρAφiφj dx , i 6= N or j 6= N∫ `

0
ρAφiφj dx + m` , i = N and j = N

[K ]ij =


∫ `

0
Y Aφ′iφ

′
j dx , i 6= N or j 6= N∫ `

0
Y Aφ′iφ

′
j dx + k` , i = N and j = N
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and

[Q ]ij =


∫ `

0
cAφ′iφ

′
j dx , i 6= N or j 6= N∫ `

0
cAφ′iφ

′
j dx + c` , i = N and j = N ,

and the force vector is defined by

[b ]i =
∫ `

0
φ′idx.

The system (40) can be employed for finite-dimensional control design. For subsequent implemen-
tation, we consider a temporal discretization of (40) using a modified trapezoid rule. For temporal
stepsizes ∆t, this yields the difference equation

zk+1 = Wzk +
1
2

[
a1P̃ (tk) + a1P̃ (tk+1) + a2P̃

2(tk) + a2P̃
2(tk+1)

]
VB (42)

where P̃ = P − PR, tj = j∆t, zj approximates z(tj), and

W =
(

I− ∆t

2
A

)−1 (
I +

∆t

2
A

)
, V = ∆t

(
I− ∆t

2
A

)−1

.

This yields an A-stable method requiring moderate storage and providing moderate accuracy.

5.2 Cylindrical Actuator Model

Due to the inherent coupling between longitudinal, circumferential, and transverse displacements in
combination with the 2-D support of the middle surface, the numerical approximation of the model
for the cylindrical actuator is significantly more complicated than the approximation of the stacked
actuator model. Among the issues which must be addressed when constructing finite element or
general Galerkin methods for the shell is the choice of elements which avoid shear and membrane
locking and the maintenance of boundary conditions. We summarize here a spline-based Galerkin
method developed in [7] for thin shells and direct the reader to that source for details regarding the
construction of constituent matrices and convergence properties of the method. Details regarding
the use of this approximation method for LQR control of shells utilizing PZT actuators can be found
in [8].

The bases for the u, v and w displacements are respectively taken to be

Φuk
(θ, x) = eimθφun(x) , Φvk

(θ, x) = eimθφvn(x) , Φwk
(θ, x) = eimθφwn(x)

where φun , φvn and φwn are cubic B-splines modified to satisfy the boundary conditions (e.g., see
page 79 of [21]). The approximating subspaces are

V N
u = span {Φuk

}Nu

k=1 , V N
v = span {Φvk

}Nv

k=1 , V N
w = span {Φwk

}Nw

k=1

and the approximate displacements are represented by the expansions

uN (t, θ, x) =
Nu∑
k=1

uk(t)Φuk
(θ, x)

vN (t, θ, x) =
Nv∑
k=1

vk(t)Φvk
(θ, x)

wN (t, θ, x) =
Nw∑
k=1

wk(t)Φwk
(θ, x).

(43)
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The restriction of the problem (29) to the approximating subspaces and construction of the
forcing vectors subsequently yields the matrix system

żN (t) = Az(t) +
[
a1(P (t)− PR) + a2(P (t)− PR)2

]
B

z(0) = z0 ,
(44)

where z = [ϑ(t), ϑ̇(t)]T , with ϑ(t) = [u(t),v(t),w(t)]T , and

A =

[
0 I

−M−1K −M−1Q

]
, B =

[
0

M−1b

]
.

The reader is referred to [7, 25] for details concerning the construction of the mass, stiffness and
damping matrices M, K and Q.

6 Model Validation

Characterization of the Stacked Actuator

We consider the capability of the modeling framework to characterize the dynamics of the stacked
actuator depicted in Figure 2(a). The PZT actuator had a length of ` = 2 × 10−2 m and a square
cross-sectional face of width w = 5×10−3 m so that the cross-sectional area is A = 2.5×10−5 m2. As
illustrated in Figure 7, one end of the actuator was considered fixed whereas the other encountered
elastic, damping and inertial effects due to the attached components of the stage mechanism.

To validate and illustrate properties of the models, we consider three regimes: (i) end displace-
ments quantified by the lumped model (21) with the thermally inactive kernel (7) employed in the
polarization model (15), (ii) displacements characterized by the lumped model with the thermally
active polarization kernel (9), and (iii) end displacements quantified by the discretization (42) of the
distributed model (20). It is illustrated that whereas the latter choice incorporates the distributed
rod nature of the device, the fact that fields and stresses are uniform along the rod length implies
that relative displacements are also uniform. A comparison of the ODE and PDE model predictions
at the rod tip (x = `) illustrates that as a result, the ODE provides a highly accurate characteriza-
tion with significantly less computation cost. Hence the ODE model is advantageous for real-time
experimental implementation.

The construction of the models requires the estimation of elastic, damping and electromechanical
parameters in addition to identification of the densities ν1 and ν2. The densities were estimated
through least squares fits to the data using the techniques detailed in [25, 27]. The manufacturer
specifications ρ = 7600 kg/m3 and Y = 7 × 1010 N/m2 were employed for the density and Young’s
modulus and remaining parameters were estimated through a least squares fit to the data. The
resulting values are summarized in Table 1. The relation between the rod and spring parameters is
provided by (22).

Lumped Model — No Thermal Activation in Polarization Relation

We consider first the characterization of the biased minor loop data shown in Figure 3 and
frequency-dependent data from Figure 4 using the lumped model (21) with the thermally inactive
kernel (7) employed in the polarization model (15). It should be noted that the stage was disassembled
between the quasistatic, biased minor loop experiments and the frequency-dependent experiments
which necessitated the re-identification of densities for the two cases.
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Distributed Model

Parameter ρ Y C m` k` c` a1 a2

Value 7600 7× 1010 5× 106 4.015 8.49× 10−5 440 1.54× 1011 0

Lumped Model

Parameter m k c ã1 ã2

Value 4.21 8.75× 107 1.52× 105 8.75× 107 0

Table 1: Parameters employed in the distributed (PDE) model (20) and lumped (ODE) model (21)
for the stacked actuator.

In the first set of experiments, displacement data measured with an LVDT was collected at a
sample rate of 0.1 Hz and four input field levels to generate a set of biased and nested transducer
responses ranging from nearly linear to hysteretic and nonlinear as shown in Figures 3 and 9. The
densities ν1 and ν2 and parameters summarized in Table 1 were obtained through a least squares fit
to the full data set comprised of four loops. The resulting model accurately quantifies both the nest
behavior and the hysteresis measured at increasing input levels.

In a second set of experiments, data was collected a frequencies ranging from 0.279 Hz to 27.9 Hz
yielding the behavior shown in Figure 4. The data from four frequencies was used to re-identify
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Figure 9: Characterization of AFM field-displacement behavior at 0.1 Hz using the ODE model (21)
with the thermally inactive kernel (7).
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parameters in the polarization model, since the stage had been modified, thus yielding the fits shown
in Figure 10. It is observed that the model characterizes the augmented hysteresis arising at higher
frequencies but slightly overpredicts the increase in displacement following field reversal which is due
primarily to inertial effects.

Lumped Model — Thermal Activation in Polarization Relation

We next employ the thermally active kernel (9) in the polarization model to incorporate relaxation
effects. Parameters in the polarization model were again identified through a least squares fit to the
four frequency data sets thus yielding the model fit shown in Figure 11. It is observed that use of
this more general kernel provides additional accuracy at higher frequencies. Whereas this improves
characterization capabilities, the added accuracy comes at the cost of decreased efficiency, and the
criteria of accuracy versus efficiency must be balanced when employing the model for real-time control
design as discussed in [12].
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Figure 10: Characterization of AFM field-displacement behavior using the ODE model (21) with
the thermally inactive kernel (7) with sample rates of (a) 0.279 Hz, (b) 1.12 Hz, c) 5.58 Hz, and
(d) 27.9 Hz.
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Figure 11: Characterization of AFM field-displacement behavior using the ODE model (21) with the
thermally active kernel (9) with sample rates of (a) 0.279 Hz, (b) 1.12 Hz, c) 5.58 Hz, and (d) 27.9 Hz.

Lumped Versus Distributed Models

It has been observed that whereas quantification of the physics of the stacked actuator leads to
the rod model (20), the fact that stresses and fields are uniform along the rod length implies that
relative displacements will also be uniform. This motivates consideration of the lumped model (21)
which yielded the fits shown in Figures 10 and 11.

To illustrate the validity of this assumption, the difference between the displacement u(t, `),
given by the discretization (42) of (20), and the displacement u`(t) resulting from (21) is plotted in
Figure 12. We emphasize that when constructing the PDE model, we employed the parameter values
summarized in Table 1 which are consistent with the spring parameters due to the relation (22). The
maximal difference of 5 × 10−10 is 5 orders of magnitude less than the micron-level displacements
being characterized thus verifying the validity of the ODE model in this regime. The accuracy of
the ODE model has important ramifications for control design since the discretized ODE model is
significantly more efficient to implement than the discretized PDE model.
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Figure 12: Difference between the displacement u(t, `) given by the distributed model (20) and u`(t)
given by the lumped model (21).

Characterization of the Stacked Actuator

We discuss here the performance of the cylindrical shell model detailed in Section 3.2, when dis-
cretized using the Galerkin techniques summarized in Section 5.2, for characterizing the longitudinal
displacements of the cylindrical PZT shell transducer depicted in Figures 2(b) and 7. Whereas the
cylindrical PZT elements employed in this design are more complex than the rod elements used in
the stage design depicted in Figure 2(a), the overall transducer is simpler and has the advantage of
enhanced vibration isolation and diminished hysteresis.

The experimental cylindrical transducer had a length of ` = 0.0396 m, radius of R = 0.0056 m
and thickness h = 0.0015 m. The manufacturer specifications ρ = 7600 kg/m3 and Y = 7.1 × 1010
N/m2 were employed for the density and Young’s modulus, and remaining model parameters were
estimated through a least squares fit to the data.

The longitudinal displacement uN provided by (43) is compared with experimental data in Fig-
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Figure 13: Characterization of the relation between the field and longitudinal displacements for the
cylindrical actuator depicted in Figures 2(b) and 7.

22



ure 13. We note that due to the inherent coupling between the longitudinal, circumferential and
transverse displacements, u, v and w in the model (24), the approximate displacements (43) are
also coupled and all are obtained through solution of (44) — we plot only uN since it corresponds
to measured data. The nearly linear behavior of both the data and model response illustrates an
advantage of this design and the property that the hysteretic E-P model (12) yields approximately
linear behavior in low drive regimes. The fidelity of the model further illustrates the accuracy and
flexibility of the modeling framework.

7 Concluding Remarks

The characterization framework developed here quantifies both the approximately linear and hys-
teretic properties of PZT device employed in atomic force microscope (AFM) positioning mechanisms.
In the first step of the development, constitutive relations are constructed through a combination of
energy analysis at the lattice level and stochastic homogenization techniques based on the assumption
that certain parameters are manifestations of underlying distributions. These relations quantify the
frequency-dependent hysteresis exhibited by the materials for general drive regimes while reducing
to approximately linear behavior at low drive regimes. In the second step of the of the development,
these constitutive relations are used to construct lumped and distributed rod and shell models for the
various PZT transducer geometries. The accuracy of the models is illustrated through comparison
with experimental data from AFM stages.

An important property of the framework is the fact that resulting models can be approximately
inverted with nearly the same efficiency as the forward models [12]. This provides the framework with
the capability for providing inverse compensators for linear control design [18, 19]. The implemen-
tation of feedback control designs for high speed scanning, using these model-based compensators,
is under present investigation.

A Continuity of the Polarization Model

We establish here the continuity of the homogenized energy model (12),

[P (E)](t) =
∫ ∞

0

∫ ∞

−∞
[P (E + EI ; Ec, ξ)](t)ν1(Ec)ν2(EI) dEI dEc (45)

as a function of both field and time in the case of negligible thermal activation. The densities ν1 and
ν2 satisfy the conditions (13) and the kernel P has the form

P (E) =
E

η
+ PRδ(E; Ec, EI)

specified in (7).
We first note that there are at most three values at which δ can change sign: −Ec, Ec and

−Ec ≤ ET ≤ Ec. The third is determined by the initial dipole distribution ξ, as depicted in
Figure 14(a), and is typically chosen so that ET = 0 when E + EI = 0.
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Figure 14: (a) Points E + EI = −Ec, Ec and ET at which δ = ±1 changes sign, and (b) behavior of
δ associated with the initial dipole distribution at E + EI = ET .

We also note that the decay conditions (13) dictate that ν1 and ν2 satisfy the relations

|ν2(EI)| ≤ c2∫ ∞

−∞
ν2(EI)dEI ≤ b2

∫ ∞

0
ν1(Ec)dEc ≤ b1

where b1, b2 and c2 are finite constants.
To establish the continuity of P with respect to E, we consider the behavior at field values E0

and E1 where, without loss of generality, we take E0 < E1. When integrating with respect to EI , we
decompose the interval (−∞,∞) into seven regions delineated by the points −Ec, Ec, ET as shown
in Figure 14(a). For this decomposition, we note that

∣∣P (E1 + EI ; Ec, ξ)− P (E0 + EI ; Ec, ξ)
∣∣ =


1
η (E1 − E0) , region excludes

−Ec, Ec, ET

1
η (E1 − E0) + 2PR , region includes

−Ec, Ec, ET .

To consolidate notation, we define the integrals

I(a, b) =
∫ b

a

1
η
(E1 − E0)ν2(EI) dEI

IPR
(a, b) =

∫ b

a

[
1
η
(E1 − E0) + 2PR

]
ν2(EI) dEI .
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It subsequently follows that

|P (E1)− P (E0)| ≤
∫ ∞

0
{|I(−∞,−Ec − E1)|+ |IPR

(−Ec − E1,−Ec − E0)|

+|I(−Ec − E0, ET − E1)|+ |IPR
(ET − E1, ET − E0)|

+|I(ET − E0, Ec − E1)|+ |IPR
(Ec − E1, Ec − E0)|

+|I(Ec − E0,∞)|} ν1(Ec) dEc

≤ (E1 − E0)
∫ ∞

0

{
4c2

η
+ 3b2

[
1
η
(E1 − E0) + 2PR

]}
ν1(Ec) dEc

≤ (E1 − E0)b1

(
4c2

η
+ 3b2

[
1
η
(E1 − E0) + 2PR

])
.

For ε > 0, take

δ = min

 ε

b1

(
4c2
η + 3b2

[
1
η (E1 − E0) + 2PR

]) , 1

 .

Under the assumption that E is continuous in time and E0 = E(t0), E1 = E(t1), for every δ > 0
there exists δ̃ > 0 such that if |t1 − t0| < δ̃, we are guaranteed that |E1 − E0| < δ. It follows that if
|t1 − t0| < δ̃, the polarization values satisfy the bound

|[P (E)](t1)− [P (E)](t0)| ≤ ε

thus establishing the continuity of the hysteresis model. This holds for all major and minor loops. As
illustrated in Figure 6, the behavior of the model which incorporates thermal activation is smoother
than the thermally inactive case considered here. For brevity, we omit the proof of this second case.
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